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Abstract

A previous theory for studying the distribution of non-uniform fields in multiple-quantum-well photodetectors

under an ac voltage is generalized by including non-adiabatic space-charge-field effects. Numerical calculations indicate

that field-domain effects are only important at high temperatures or high voltages when both injection and sequential-

tunneling currents are significant. On the other hand, it is found that the non-adiabatic effects included in this gen-

eralized theory become significant at low temperatures and low voltages when field-domain effects are negligible. In

order to explain the non-adiabatic charge-density fluctuations quantum-statistically, a non-adiabatic differential

equation is derived based on the self-consistent Hartree model by using a shifted Fermi–Dirac model for the local

fluctuation of electron distributions. The non-adiabatic effect is found to cause an ‘‘equilibrium’’ state variation with

time under an ac voltage.
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1. Introduction

Multiple-quantum-well (MQW) photodetectors

using intersubband transitions have attracted a lot

of studies over the past few years [1]. Transient

spectroscopy allows us to gain information on the

sequential-tunneling processes between quantum

wells (QWs) and thus QW parameters, including

geometric and QW capacitances at the same time.
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Recently, a residual dark current in quantum-well

infrared photodetectors (QWIPs) was reported
when an ac bias voltage was swept through zero

[2]. Later, a roll-off of the dynamical responsivity

in QWIPs was observed when the frequency of a

chopped incident optical flux was increased be-

yond a certain value [3]. More recently, a counter-

clockwise hysteresis loop for the tunneling current

and a clockwise hysteresis loop for the emission

current in QWIPs was seen experimentally as the
device temperature was swept up from 10 to 300 K

and then back down [4]. These new phenomena

found in QWIPs were physically explained by a

non-adiabatic sequential-tunneling model [5]. The

non-adiabatic effect discussed in this paper refers
ed.
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to the fact that a transient current not only

depends on the magnitude of an electric field, but

also depends on its time derivative.

For the field-domain effect, we generalize the

previous theory [6] for studying the distribution

of non-uniform fields in MQW photodetectors
under an ac voltage by including non-adiabatic

space-charge-field effects. We find from numerical

results that field-domain effects are only impor-

tant at high temperatures or high voltages when

both injection and sequential-tunneling currents

are significant. On the other hand, we find that

non-adiabatic effects included in the generalized

theory become visible at low temperatures and
low voltages when field-domain effects are negli-

gible. The time duration for non-adiabatic effects

is found to depend on the quantum capacitance,

while the classical dielectric displacement current

is found to be related to the geometric capaci-

tance. Moreover, a negative conduction current

is predicted under a positive voltage in non-

steady state.
For non-adiabatic transport, we consider elec-

trons in a MQW system in the presence of a uni-

form ac electric field. We assume that electrons

during the sequential-tunneling process only see an

instantaneous electric field and stay in equilibrium

states due to very fast elastic and inelastic scatter-

ing inside the quantum well. The non-adiabatic

effect causes an ‘‘equilibrium’’ state to vary with
time. As a result, the charge-density fluctuation in

the QW will modify the Hartree potential in the

surrounding barrier region, and thus greatly affect

the sequential tunneling of electrons through the

barrier. Simultaneously, the non-adiabatic fluctu-

ation of charge density also modifies electronic

states in the quantum well within the self-consistent

Hartree model [7].
The organization of the paper is as follows. In

Section 2, we introduce our model for classical

charge-density fluctuations and the distribution of

field domains in MQWs. In Section 3, we gener-

alize the model to include quantum non-adiabatic

charge-density fluctuations and their effects on the

distribution of field domains in MQWs. Section 4

is devoted to the derivation of a non-adiabatic
differential equation based on the self-consistent

Hartree model by using a shifted Fermi–Dirac
model for the local fluctuation of electron dis-

tributions and provides a quantum-statistical

explanation for the non-adiabatic charge-density

fluctuations introduced in Section 2. Some

numerical results for classical and quantum

charge fluctuations, as well as for non-adiabatic
fluctuations in electron distributions, are pre-

sented in Section 5. The paper is concluded in

Section 6.
2. Classical charge fluctuations

In this section, we study effects of field domains
resulting from the imbalance between injection

and sequential-tunneling currents and show that

these effects become negligible at low temperatures

and voltages.

Electrons in QWs are confined in the direction

perpendicular to the wells, while electrons in

heavily-doped contact layers are free in all three

directions. Therefore, we expect the tunneling of
electrons from a contact layer to a QW (3D-to-2D)

will be physically different than that from one QW

to another (2D-to-2D).

As shown in Fig. 1, we see that the distribution

of uniform dc electric fields in (a) with

E0 ¼ E1 ¼ E2 ¼ � � � ¼ EN is not stable if the in-

jection current flowing from the left contact layer

to the first QW and the sequential-tunneling cur-
rent flowing from the first QW to the second QW

are different [6,8,9]. As an example, we assume in

(b) that the injection current is smaller than the

sequential-tunneling current. In this situation, the

local field E0 in the first (emitter) barrier layer has

to be increased so as to equalize these two cur-

rents. As a result of E0 > E1 ¼ E2 ¼ � � � ¼ EN , we

know from the Maxwell equations that the charge
density in the first QW will be reduced relative to

the others [8], i.e. q1 < q2 ¼ q3 ¼ � � � ¼ qN . Now,

let us further compare the tunneling currents

flowing from the first QW to the second QW and

that flowing from the second QW to the third QW.

We realize from (c) that the tunneling current

flowing from the first QW is less than that flowing

from the second QW since q1 < q2 for E1 ¼ E2.
Therefore, E1 > E2 ¼ � � � ¼ EN is required so as to

equalize these two sequential-tunneling currents.



Fig. 1. The processes (a)–(d) for the formation of field domains in a multiple-quantum-well (MQW) sample with N quantum wells

(QWs). Here, Ek for k ¼ 0; 1; 2; . . . ;N indicates local electric fields in ðN þ 1Þ different barrier layers, and qk for k ¼ 1; 2; . . . ;N cor-

responds to different charge densities inside N QWs. l0 is the chemical potential in contact layers, Vb is the applied voltage, and Lt is the

total length of MQWs.
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Consequently, we are left with q1 < q2 <
q3 ¼ � � � ¼ qN . This process will continue up to the

last (N th) QW, as displayed in (d), until the initial

field distribution E0 > E1 > E2 > � � � > EN and

density distribution q1 < q2 < q3 < � � � < qN are
reached. Here, the local field Ej is a constant in the

jth barrier layer, and the splitting of different local

electric fields constructs the field domains in

MQWs. The electric fields in different barrier re-

gions in steady state will be redistributed if the

total tunneling current flowing into the bottom

contact layer is different from the injection current

flowing out of the top contact layer. Therefore, the
above field-adjustment process will be repeated

again and again until the total tunneling current

flowing to the bottom contact layer is equal to the

injection current flowing from the top contact

layer, and then, a stable distribution of local fields

is formed. It should be noted that the distribution

of electric-field domains in steady state depends on

the value of voltage applied at each moment. A
variation of the applied voltage with time results in

charge-density oscillations in each QW, and

varying field domains as well.

The injection current density (3D-to-2D) from

the top contact layer to the first QW is calculated

to be [8]
J 3D
inj ½l0;l1ðtÞ;E0ðtÞ�

¼ em�kBT

2p2�h3
E0ðtÞ
jE0ðtÞj

Z þ1

0

dET½E; jE0ðtÞj�

� ln
1þ exp l0 �Eð Þ=kBT½ �

1þ exp l1ðtÞ �E� eLBjE0ðtÞjð Þ=kBT½ �

� �
;

ð1Þ

where t is the time, m� is the effective mass of

electrons, T is the electron (or lattice) temperature,

LB is the thickness of the barrier, T½E; jEðtÞj� is the
quantum transmission of electrons [10] with ki-

netic energy E through a barrier biased by an

electric field EðtÞ, and the chemical potential l0 in

the contact layer is related to the electron con-
centration nc by
nc ¼
1

2p2

2m�

�h2

� �3=2Z þ1

0

dE
ffiffiffiffi
E

p
1

�
þ exp

E�l0

kBT

� ���1

:

For low T , electrons in QWs can only populate the

ground subband with quantized energy E0. Fur-

thermore, the sequential-tunneling current density
(2D-to-2D) from the kth QW to the neighboring

ðk þ 1Þth QW is found to be [1]
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J 2D
k ½lkðtÞ;lkþ1ðtÞ;EkðtÞ�

¼ em�

p�h2LW

vdk ½EkðtÞ�
Z þ1

0

dET½EþE0; jEkðtÞj�

� f0 E½
�

�lkðtÞ�� f0 E
	

�lkþ1ðtÞþ eLBjEkðtÞj

�
;

ð2Þ

where LW is the well width, k ¼ 1; 2; . . . ;N repre-

sents the index of N wells, k ¼ N þ 1 corresponds

to the bottom contact layer, lNþ1 ¼ l0, f0ðxÞ ¼
½1þ expðx=kBT Þ��1

, and the chemical potential

lkðtÞ in the kth QW introduced in Eqs. (1) and (2)

can be determined by the electron density nkðtÞ in
the kth QW through

lkðtÞ ¼ kBT ln exp
p�h2nkðtÞ
m�kBT

� ��
� 1

�
;

which is measured from E0. In Eq. (2), vdk ½EkðtÞ� is
the drift velocity of electrons in the kth barrier
layer, given by [1]

vdk ½EkðtÞ� ¼
EkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
kðtÞ þ E2

s

q
2
64

3
75vs

with the saturation velocity vs and saturation field

Es, respectively.

As explained in Fig. 1, the distribution of field
domains changes with the value of the voltage

VbðtÞ applied to the sample. When VbðtÞ varies with
time, the charge density will fluctuate in each QW,

accompanied by field domains that vary adiabati-

cally across the whole sample. In this case, the

charge-density fluctuation qjðtÞ ¼ enjðtÞ can be

described by the equation [6]

dqjðtÞ
dt

¼ Pc
Xj�1

k¼1

1ð �PcÞj�k�1J 2D
k lkðtÞ;lkþ1ðtÞ;EkðtÞ

	 

h½EkðtÞ�

þPc 1ð �PcÞj�1J 3D
inj l0;l1ðtÞ;E0ðtÞ½ �h½E0ðtÞ�

�Pc
XN
k¼jþ1

1ð �PcÞk�j�1J 2D
k lkðtÞ;lk�1ðtÞ;Ek�1ðtÞ½ �

�h½�Ek�1ðtÞ��Pc 1ð �PcÞN�jJ 3D
inj l0;lN ðtÞ;EN ðtÞ½ �

�h½�EN ðtÞ��J 2D
j ljðtÞ;ljþ1ðtÞ;EjðtÞ

	 

h½EjðtÞ�

þJ 2D
j ljðtÞ;lj�1ðtÞ;Ej�1ðtÞ

	 

h½�Ej�1ðtÞ�;

ð3Þ
where the small diffusion current [6,9] is neglected,

hðxÞ equals one for x > 0 and zero for x6 0,

j ¼ 1; 2; . . . ;N , and 06 Pc 6 1 is the capture

probability of electrons into the QW. The first two

terms in Eq. (3) represent the forward contri-
butions from capture current into the jth QW,

while the third and fourth terms represent the

backward contributions from capture current into

that QW. The last two terms correspond to the

forward and backward tunneling currents flowing

out of the jth QW, respectively.

If electrons in QWs can be simply viewed as a

distribution of sheet charges (zero-thickness), we
get the following boundary conditions [6] from the

Maxwell equations for two local fields on both

sides the jth QW

EjðtÞ � Ej�1ðtÞ ¼
1

�0�r
½qjðtÞ � en2D�; ð4Þ

where quantum properties of an electron gas in a

QW have been ignored, n2D is the electron number

density in equilibrium, j ¼ 1; 2; . . . ;N and �r is the
relative dielectric constant of the well material.

Finally, the sum of individual voltage drops on

each period (well plus barrier) is fixed by the
voltage VbðtÞ. This restraint gives rise to

LBE0ðtÞ þ ðLB þ LWÞ
XN
k¼1

EkðtÞ ¼ VbðtÞ ð5Þ

and Lt ¼ LB þ NðLB þ LWÞ is the total length of the

MQW structure in Fig. 1.

Combining Eqs. (3) and (4) for forward con-
tributions we know that the sum of the displace-

ment and conduction currents is a constant for

Pc ¼ 1, i.e.

�0�r
dEj�1ðtÞ

dt
þ J 2D

j�1½lj�1ðtÞ; ljðtÞ;Ej�1ðtÞ�

¼ �0�r
dEjðtÞ
dt

þ J 2D
j ½ljðtÞ;ljþ1ðtÞ;EjðtÞ�:

However, the conduction current itself is not a

constant, which creates classical charge-density

fluctuations and field domains in MQWs. For non-

steady state, the initial condition for Eq. (3) can be

set as qjð0Þ ¼ en2D if the ac electric field is applied
to the sample after t ¼ 0. Eqs. (3)–(5) together

(totally 2N þ 1 equations) allow us to simulta-

neously solve for the charge-density distributions
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qkðtÞ (or chemical-potential distributions lkðtÞ) for
k ¼ 1; 2; . . . ;N , as well as for the local-field dis-

tributions EkðtÞ for k ¼ 0; 1; 2; . . . ;N beyond steady

state. For steady state with dqjðtÞ=dt ¼ 0, only

forward contributions will stay. In this case, we
only need to replace Eq. (3) at each moment by [8]

J 2D
j ½lj; ljþ1;Ej� ¼ PcJ 3D

inj ½l0; l1;E0�

with j ¼ 1; 2; . . . ;N . Under this condition, the

measured tunneling current density simply equals

J 3D
inj ½l0; l1;E0�. But this does not imply a uniform

distribution of charge densities and electric fields.
3. Quantum charge fluctuations

It has been known for a long time that a uni-

form-field distribution will underestimate or

overestimate the sequential-tunneling current in

MQWs at high or low voltages, respectively, [8]

while the charge density will remain in its equi-

librium value even when the uniform electric field
is an ac field. In the classical field-domain model

[6,8], quantum properties of electrons in QWs have

been ignored. On the other hand, it has also been

shown that the quantum non-adiabatic effects give

rise to a residual current at zero of applied ac

voltage due to a space-charge-field effect in the

presence of a uniform ac electric field [2,5,11,12].

Therefore, it is very important to include, simul-
taneously, both the classical field-domain effect

and the quantum non-adiabatic effect on the se-

quential tunneling of electrons in MQWs when an

ac electric field is applied to the sample.

When the quantum non-adiabatic effect is in-

cluded, Eq. (3) for j ¼ 1; 2; . . . ;N should be mod-

ified to

dqjðtÞ
dt

¼ Pcð1� PcÞj�1J 3D
inj ½l0; l1ðtÞ;E0ðtÞ�h½E0ðtÞ�

þ Pc
Xj�1

k¼1

ð1� PcÞj�k�1

� J 2D
k ½lkðtÞ � eLBE

na
k ðtÞ; lkþ1ðtÞ;E0

kðtÞ�

� h½E0
kðtÞ� � Pcð1� PcÞN�jJ 3D

inj ½l0; lNðtÞ;EN ðtÞ�
�h½�EN ðtÞ��Pc
XN
k¼jþ1

ð1�PcÞk�j�1

�J 2D
k ½lkðtÞ�eLBE

na
k ðtÞ;lk�1ðtÞ;E0

k�1ðtÞ�
�h½�E0

k�1ðtÞ��J 2D
j ½ljðtÞ�eLBE

na
j ðtÞ;ljþ1ðtÞ;E0

jðtÞ�
�h½E0

jðtÞ�þJ 2D
j ½ljðtÞ�eLBE

na
j ðtÞ;lj�1ðtÞ;E0

j�1ðtÞ�

�h½�E0
j�1ðtÞ��

LB

S
CQW

dEna
j ðtÞ
dt

; ð6Þ

where the last term represents the non-adiabatic

increase of charge density in the jth QW, Ena
j ðtÞ is

the non-adiabatic space-charge field in the jth QW

and barrier, S is the cross-sectional area of the

sample and CQW ¼ ðm�e2S=p�h2Þf0½E0 � leðn2D; T Þ�
is the quantum capacitance with chemical poten-
tial leðn2D; T Þ for an equilibrium two-dimensional

electron gas in QWs. The non-adiabatic space-

charge fields Ena
j ðtÞ for j ¼ 1; 2; . . . ;N in Eq. (6) are

determined by the following differential equations

[5,11,12]

CQW

dEna
j ðtÞ
dt

¼ CQW

dEjðtÞ
dt

� S

LB

DJna
j ðtÞ; ð7Þ

which contains a ‘‘quantum displacement’’ current

due to CQW as a source term. The non-adiabatic

change of current density in Eq. (7) is

DJna
j ðtÞ
¼ J 2D

j ½ljðtÞ�eLBE
na
j ðtÞ;ljþ1ðtÞ;E0

jðtÞ�h½E0
jðtÞ�

�J 2D
j ½ljðtÞ�eLBE

na
j ðtÞ;lj�1ðtÞ;E0

j�1ðtÞ�h½�E0
j�1ðtÞ�

�J 2D
j ½ljðtÞ;ljþ1ðtÞ;EjðtÞ�h½EjðtÞ�

þJ 2D
j ½ljðtÞ;lj�1ðtÞ;Ej�1ðtÞ�h½�Ej�1ðtÞ�

with Ena
Nþ1ðtÞ ¼ 0. The charge-density fluctuations

in Eq. (6) now contain both adiabatic and non-

adiabatic contributions. The last term in Eq. (6)

represents the non-adiabatic contributions. The

total field E0
kðtÞ and the average field EjðtÞ in Eqs.

(6) and (7) are defined by

E0
kðtÞ

EkðtÞ

� �
¼ EkðtÞ þ Ena

k ðtÞ
EkðtÞ þ Ek�1ðtÞ½ �=2

� �
:

Simultaneously, Eq. (4) should also be modified to

EjðtÞ � Ej�1ðtÞ �
CQW

C0

Ena
j ðtÞ

¼ 1

�0�r
½qjðtÞ � en2D�; ð8Þ



492 D. Huang, D.A. Cardimona / Infrared Physics & Technology 44 (2003) 487–501
where C0 ¼ �0�rS=LB is the classical geometric

capacitance. For non-steady state, the total mea-

sured current density for VbðtÞP 0 is given by

JnsðþÞ
m ðtÞ
¼ ð1�PcÞNJ 3D

inj ½l0;l1ðtÞ;E0ðtÞ�h½E0ðtÞ�

þ
XN
k¼1

ð1�PcÞN�kJ 2D
k ½lkðtÞ� eLBE

na
k ðtÞ;lkþ1ðtÞ;E0

kðtÞ�

�h½E0
kðtÞ�þJ 3D

inj ½l0;lN ðtÞ;EN ðtÞ�h½�EN ðtÞ�

þLBC0

S

dEN ðtÞ
dt

; ð9Þ

which includes both conduction and dielectric

displacement currents, where the last term repre-

sents the displacement current from the geometric

capacitance. In this case, the in-flowing injection

current is not equal to the out-flowing conduction
current from the sample due to dqjðtÞ=dt 6¼ 0. On

the other hand, for VbðtÞ < 0 we have

Jnsð�Þ
m ðtÞ
¼ ð1� PcÞNJ 3D

inj ½l0; lN ðtÞ;EN ðtÞ�h½�EN ðtÞ�

þ
XN
k¼1

ð1� PcÞk�1

� J 2D
k ½lkðtÞ � eLBE

na
k ðtÞ; lk�1ðtÞ;E0

k�1ðtÞ�
� h½�E0

k�1ðtÞ� þ J 3D
inj ½l0; l1ðtÞ;E0ðtÞ�h½E0ðtÞ�

þ LBC0

S

dE0ðtÞ
dt

: ð10Þ

In steady state, however, there is no non-adiabatic
charge-density fluctuation, and the total measured

current density is mainly determined by the injec-

tion current, which is given for VbðtÞP 0 by

J s
mðtÞ ¼ J 3D

inj ½l0; l1ðtÞ;E0ðtÞ� þ
LBC0

S

dEN ðtÞ
dt

; ð11Þ

and can be modified by the local field at the emitter
barrier. Moreover, due to dqjðtÞ=dt 6¼ 0 in non-

steady state we can define a total differential ca-

pacitance for the MQW structure

CdiðtÞ �
XN
j¼1

Cj
diðtÞ ¼

dVbðtÞ
dt

� ��1

S
XN
j¼1

dqjðtÞ
dt

;

ð12Þ
which is time-dependent and different from both

C0 and CQW.
From Eq. (8) we know that both the field-

domain and non-adiabatic effects will cause

charge-density fluctuations in QWs in the presence

of an ac electric field. The quantum capacitance

CQW only enters into Eq. (6) for the charge-density

fluctuations but not into Eq. (9) for the total
measured current density Jnsð�Þ

m ðtÞ. Instead, the

conduction current is modified by the non-

adiabatic space-charge field Ena
j ðtÞ which is in-

duced by the ‘‘quantum displacement’’ current as

shown in Eq. (7). On the other hand, the geometric

capacitance C0 directly modifies the total measured

current in Eq. (9) as a contribution from the di-

electric displacement current but does not enter
into the charge fluctuations in Eq. (6). When only

the forward contributions are included, the sum of

dielectric displacement and conduction currents

flowing into and out of a QW is a constant for

Pc ¼ 1. Because the conduction current flowing

into the first QW is simply the injection current

from the top contact layer, the change in the

conduction currents flowing into different QWs is
determined by the variation of the dielectric dis-

placement currents due to the non-uniform elec-

tric-field distribution inside the whole system.

From Eq. (7) we further find that even under a

uniform ac electric field, the non-adiabatic con-

duction current density flowing through each QW

is not equal to the sum of adiabatic sequential-

tunneling current flowing out of the QW and
the ‘‘quantum displacement’’ current density

LBCQWdEjðtÞ=dt because dEna
j ðtÞ=dt 6¼ 0.
4. Non-adiabatic self-consistent Hartree model

The non-equilibrium electron distribution

function in a shifted Fermi–Dirac model [13] can

be written as

f l0ðkÞ ¼ f l0
0 ðEjkþDkj þ DEkÞ; ð13Þ

where f l0
0 ðEkÞ is defined by

f l0
0 ðEkÞ ¼ 1

�
þ exp

Ek � l0ðn2D; T Þ
kBT

� ���1

: ð14Þ

For the shifted Fermi–Dirac model in Eq. (13),

there exists a local charge-density fluctuation for

each electron state jki, defined by



D. Huang, D.A. Cardimona / Infrared Physics & Technology 44 (2003) 487–501 493
d

dt
dqkðtÞ ¼

e
V

½f l0ðkÞ � f l0
0 ðEkÞ�

¼ � e
V

dDEk

dt

� 
t

�
� of l0

0 ðEkÞ
oEk

�
; ð15Þ

where V is the volume of the sample.
For a MQW system with thick barrier layers,

the adiabatic sequential-tunneling current density

flowing in the z direction (growth direction and

perpendicular to the QW layers) is found to be

Jl0ðtÞ

¼ 2e
V

X
k

vzkT½Ek; jEbj�½f l0ðEkÞ� f l0ðEk þejEbjLBÞ�;

ð16Þ
where vzk is the group velocity of electrons in the z
direction, and Eb stands for the applied electric

field. If Xst � 1 with st being the electron se-

quential-tunneling time, T½Ek; jEbj� has to be

found by solving a time-dependent Schr€oodinger
equation. Otherwise, T½Ek; jEbj� can be calculated
from a static Schr€oodinger equation at each time t if
Xst 	 1. We will be only interested in the latter

case with Xst 	 1 hereafter. If we replace f l0ðEkÞ
to leading-order approximation by the equilibrium

value f l0
0 ðEkÞ in Eq. (14) for faster electron energy

relaxation processes due to inelastic scattering of

electrons compared to the electron sequential

tunneling, and replace the electron group velocity
vzk by a drift velocity vd½Eb� (a statistically-averaged

group velocity) of electrons in a bulk material, Eq.

(16) reduces to Levine�s sequential-tunneling

model [1]

Jl0 ½Eb� ¼
2e
V

vd½Eb�
X
k

T½Ek; jEbj�½f l0
0 ðEkÞ

� f l0
0 ðEk þ ejEbjLBÞ�; ð17Þ

where vd½Eb� ¼ ðesp=m�ÞEb, and the momentum-

relaxation time sp is given by

sp ¼
m�vs

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

s þ E2
b

q : ð18Þ

In Eq. (17), Jl0 ½Eb�=evd½Eb� can be equivalently

viewed as a three-dimensional tunneling-electron

density which depends on Eb, T and n2D.
From now on, we limit ourselves to an electri-

cal-quantum limit where only the ground subband
of the quantum well is occupied by electrons at low

temperatures and low electron densities. The

electron kinetic energy of the ground subband

(measured from the edge E0) is given by Ek ¼
�h2k2=2m�. In the current-surge model [5,11,12], we

assume that DEk is associated with the global
fluctuation (independent of individual electron

state) of the chemical potential of electrons in the

QW. By writing DEk ¼ �Dl ¼ l0ðn2D; T Þ � lðtÞ
for the global chemical-potential fluctuation,

where lðtÞ and l0ðn2D; T Þ are, respectively, the

transient chemical potential for electron density

neðtÞ and that for an equilibrium electron gas in

quantum wells, we get

dDEk

dt
¼ oDEk

ot
� ol
one

dne
dt

: ð19Þ

We further introduce a spatially-averaged non-

adiabatic space-charge field EnaðtÞ which is defined

by [5,11,12]

DEk ¼ eEnaðtÞLB; ð20Þ
where EnaðtÞ measures the non-adiabatic reduction
of the electron chemical potential in QWs under a

uniform applied electric field. If we use Levine�s
sequential-tunneling model in Eq. (17), we find the

following non-adiabatic current density due to the

existence of this non-adiabatic space-charge field

EnaðtÞ
DJnaðtÞ ¼ Jl0�eLBEna ½Eb þ Ena� � Jl0 ½Eb�; ð21Þ
where Jl0 ½Eb� has been given in Eq. (17). In Eq.

(21), the first term can be viewed as an equivalent

capture current into the QW, while the second

term can be regarded as a sequential-tunneling

current flowing out of the QW.

For a QW, the electron density will be constant

if the conduction currents flowing in and out of the
well are equal. The variation of the charge density

in the well is created by an imbalance in conduc-

tion currents. The charge-current conservation law

requires

V
d

dt
dqðtÞ � V

d

dt

X
k

dqkðtÞ ¼ SDJnaðtÞ: ð22Þ

The left-hand side of Eq. (22) represents the non-

adiabatic charge increase inside the well, while the

right-hand-side of the equation stands for the net
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increase of charge due to non-adiabatic current

flowing into the QW.

If Xst 	 1, the ground-state electron wave

function /1ðz; tÞ inside the QW within the self-

consistent Hartree model is determined by [14]�
� �h2

2

d

dz
1

m�ðzÞ
d

dz

� �
� eEbðtÞzþ UQWðzÞ

þVHðz; tÞ
�
/1ðz; tÞ ¼ E0ðtÞ/1ðz; tÞ; ð23Þ

where E0ðtÞ is the time-dependent ground-subband

edge, the electron effective mass m�ðzÞ is mW in the
well and mB in the barrier, and UQWðzÞ is zero in-

side the well but V0 outside the well. Within the

adiabatic limit, we have lðtÞ ¼ l0ðn2D; T Þ, other-
wise dqðtÞ 6¼ 0 for non-adiabatic cases. The Har-

tree potential VHðz; tÞ in Eq. (23) can be found

from the Poisson equation

d

dz
�rðzÞ

d

dz
VHðz; tÞ

� �
¼ e2

�0
½NDðzÞ � neðz; tÞ�; ð24Þ

where donors are assumed completely ionized, and

the relative dielectric constant �rðzÞ is �W in the well

and �B in the barrier. NDðzÞ in Eq. (24) is the static

profile of donor doping for the single quantum

well, neðz; tÞ ¼ j/1ðz; tÞj
2neðtÞ is the density func-

tion, and

neðtÞ ¼ n2D þ dqðtÞ ¼ n2D þ q2D

Z þ1

0

dEdf ðE; tÞ;

ð25Þ
where q2D ¼ ðmW=p�h

2Þ is the density of states for

two-dimensional electrons in the QW, df ðE; tÞ
represents the local non-adiabatic fluctuation of

the electron distribution function in energy space.

Here, the number of electrons in the quantum well

is not a constant due to the non-adiabatic current

flowing. Moreover, we find from Eqs. (15), (19)

and (25)

d

dt
dqðtÞ

¼ eq2D

Z þ1

0

dE
o

ot
df ðE; tÞ

þ e2LBq2D

d

dt
EbðtÞ

Z þ1

0

dE
�
� of l0

0 ðEÞ
oE

�
:

ð26Þ
Applying Eq. (22) and using Eqs. (21) and (26), we

find the following integral equation for df ðE; tÞ by
using Levine�s model in Eq. (17)

eq2D

Z þ1

0

dE
o

ot
df ðE;tÞ

þe2LBq2D

dEbðtÞ
dt

Z þ1

0

dE
�
�of l0

0 ðEÞ
oE

�

�eq2D

LW

fvd½Eb�þdvd½df �g

�
Z þ1

0

dET½EþE0; jEbj;VH��½f l0
0 ðEÞ

þdf ðE;tÞ�f l0
0 ðEþejEbjLBÞ�df ðEþejEbjLB;tÞ�

þeq2D

LW

vd½Eb�
Z þ1

0

dET½EþEð0Þ
0 ; jEbj;Vð0Þ

H �½f l0
0 ðEÞ

�f l0
0 ðEþejEbjLBÞ�¼0; ð27Þ

where T½E þ E0; jEbj;VH� is the quantum trans-

mission of electrons and can be calculated by it-

eration (see Appendix A). In Eq. (27),VHðz; tÞ and
E0ðtÞ are written simply as VH and E0. The adia-
batic quantities V

ð0Þ
H ðz; tÞ and Eð0Þ

0 ðtÞ can be ob-

tained by simply setting dqðtÞ ¼ 0 in Eq. (24) and

VHðz; tÞ ¼ V
ð0Þ
H ðz; tÞ in Eq. (23). Moreover, dvd½df �

introduced in Eq. (27) is calculated to be

dvd½df � ¼ � q2D

2n2D

Z þ1

0

dEdf ðE; tÞ

ffiffiffiffiffiffiffi
2E
mW

s
: ð28Þ

Finally, Eq. (27) leads us to the non-adiabatic

dynamical differential equation for df ðE; tÞ
o

ot
df ðE; tÞ� eLB

dEbðtÞ
dt

of l0
0 ðEÞ
oE

� 1

LW

fvd½Eb�þdvd½df �gT½EþE0; jEbj;VH�� ½f l0
0 ðEÞ

þdf ðE; tÞ� f l0
0 ðEþejEbjLBÞ�df ðEþ ejEbjLB; tÞ�

þ 1

LW

vd½Eb�T½EþEð0Þ
0 ; jEbj;Vð0Þ

H �½f l0
0 ðEÞ

� f l0
0 ðEþ ejEbjLBÞ� ¼ 0; ð29Þ

where the initial condition is chosen to be

df ðE; tÞ ¼ 0 at t ¼ 0 if the ac electric field is ap-

plied to the system after t ¼ 0. df ðE; tÞ has a lower

bound which is determined by the condition

df ðE; tÞ þ f l0
0 ðEÞ ¼ 0.

For small Dl, the first term in Eq. (29) can be
approximated to leading order by
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o

ot
df ðE; tÞ 
 oDl

ot

�
� of l0

0 ðEÞ
oE

�
: ð30Þ

Similarly, the third term in Eq. (29) can be ap-

proximated as

T½E þ E0; jEbj;VH�½f l0
0 ðEÞ þ df ðE; tÞ

� f l0
0 ðE þ ejEbjLBÞ � df ðE þ ejEbjLB; tÞ�


 T½E þ Eð0Þ
0 ; jEbj;Vð0Þ

H þ ðdVð0Þ
H =dn2DÞq2DDl�

� ½f l0þDl
0 ðEÞ � f l0þDl

0 ðE þ ejEbjLBÞ�; ð31Þ

where ðdVð0Þ
H =dn2DÞ ¼ ðe2=2�0�WqTFÞ and qTF ¼

ðe2=2�0�WÞq2D from the Thomas–Fermi model [14].

By recalling Dl ¼ �eEnaðtÞLB, Eq. (29) results in

the current-surge model [11], where

CQW ¼ e2Sq2D

Z þ1

0

dE
�
� of l0

0 ðEÞ
oE

�
;

Jl0 ½Eb�

¼ eq2D

LW

vd½Eb�
Z þ1

0

dET E
h

þ Eð0Þ
0 ; jEbj;Vð0Þ

H

i
� f l0

0 ðEÞ½ � f l0
0 ðE þ ejEbjLBÞ�;

T E
h

þ Eð0Þ
0 ; jEbj;Vð0Þ

H � eEnaLB

i

 T E

h
þ Eð0Þ

0 ; jEb þ Enaj;Vð0Þ
H

i
;

and vd½Eb� þ dvd½df � 
 vd½Eb þ Ena� if we set sp 

LB=vF with vF being the electron group velocity at
the Fermi energy. The non-adiabatic space-charge

field EnaðtÞ introduced by Dl ¼ �eEnaðtÞLB can be

calculated from

EnaðtÞ ¼ � 1

eLB

Z þ1

0

dEdf ðE; tÞ; ð32Þ

which becomes positive if dqðtÞ < 0.
5. Numerical results

In this section, we first present numerical results
for distributions of both local fields and charge

densities in the presence of an applied ac electric

field, including effects of classical and quantum

charge fluctuations. After this, we present results

for fluctuating electron distributions and Hartree

potentials. The voltage is defined to be VbðtÞ ¼
EbðtÞLt with EbðtÞ ¼ Edc þ EacðtÞ and EacðtÞ ¼
Em sinð2pt=TpÞ for tP 0.

The sample 1 we consider for showing domain

effects is an AlGaAs/GaAs MQW structure. The

total number of QWs is N ¼ 10, with eleven bar-

riers. The parameters for sample 1 are: well
thickness LW ¼ 75 �AA, barrier thickness LB ¼ 339 �AA,

barrier height V0 ¼ 224:5 meV, electron effective

mass m� ¼ 0:065m0 with free electron mass m0,

electron areal density n2D ¼ 5� 1011 cm�2, con-

tact-layer electron concentration nc ¼ 6� 1017

cm�3, cross-sectional area S ¼ 10�4 cm2, capture

probability Pc ¼ 0:5, saturation velocity vs ¼
2� 106 cm/s, saturation field Es ¼ 2 kV/cm, and
relative dielectric constant �r ¼ 12. For this sam-

ple, the ground-state subband edge is calculated to

be E0 ¼ 44:1 meV. For the applied ac electric field,

Em ¼ 5 kV/cm, Edc ¼ 0 and Tp ¼ 0:1 s. The sample

2 we chose for the non-adiabatic self-consistent

Hartree model is also an AlGaAs/GaAs MQW

structure. The parameters for sample 2 are:

LW ¼ 80 �AA, LB ¼ 300 �AA, V0 ¼ 331 meV, electron
effective mass in well mW ¼ 0:067m0, electron ef-

fective mass in barrier mW ¼ 0:092m0, n2D ¼
4� 1011 cm�2, S ¼ 2:25� 10�4 cm2, vs ¼ 2� 106

cm/s, Es ¼ 2 kV/cm, dielectric constant in well

�W ¼ 12:0, and dielectric constant in barrier

�W ¼ 11:2. Eð0Þ
0 is calculated to be 44.5 meV. For

the applied electric field, Edc ¼ 0:05 kV/cm and

Tp ¼ 4 s.
We show in Fig. 2 the local fields EjðtÞ � EbðtÞ

in different layers of sample 1 (in (a)) and the

density fluctuation njðtÞ � n2D in different QW�s (in
(b)) at several times t=Tp for T ¼ 77 K. From (a)

we find that the field-domain effect is negligible

at t=Tp ¼ 0:05 (very small applied field) because

both the injection current J 3D
inj and the sequential-

tunneling current J 2D
k are both extremely small in

this case. With the increase of EbðtÞ, i.e. t=Tp in-

creases from 0.05 to 0.25, fields close to the emitter

barrier are enhanced dramatically relative to the

uniform field EbðtÞ. This is a result of the huge

current imbalance J 3D
inj 	 J 2D

1 under the uniform

field EbðtÞ, as explained in Fig. 1(b). At the same

time, fields close to the receiver barrier are sup-

pressed almost to zero. From (b) we find that when
EbðtÞ is large, densities close to the emitter barrier

are greatly reduced with respect to the equilibrium
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Fig. 2. Calculated local fields EjðtÞ � EbðtÞ in (a) in different barrier layers and density fluctuations njðtÞ � n2D in (b) inside different

QWs of sample 1 at times t=Tp ¼ 0:05, 0.11, 0.20 and 0.25 s. The parameters used in calculations are given in the text.
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value n2D. This is accompanied by a great en-

hancement of the local field E0ðtÞ � EbðtÞ at the

emitter barrier, as shown in (a). However, densities

close to the receiver barrier remain near n2D due to

the suppressed local field EN ðtÞ 
 0. It is obvious

from (b) that some electrons have been removed

from the sample since
P

j ½njðtÞ � n2D� < 0, which
is true even for steady state. The calculation done

here corresponds to a non-steady state. Therefore,

the net number of electrons removed from the

sample changes with time under an ac voltage,

leading to a differential capacitance Cj
diðtÞ (see Eq.

(12)).
Fig. 3. Calculated local fields EjðtÞ � EbðtÞ in different barrier layers

EjðtÞ � EbðtÞ with different values of Em, Tp and T are presented in (a)

nc are shown in (b). The changed parameters are indicated in figures. T

Fig. 2.
Fig. 3 compares local fields EjðtÞ � EbðtÞ in

sample 1 at t=Tp ¼ 0:25 as a function of barrier

index j for different values of Em, Tp, T in (a) and

different values of N , n2D, nc in (b). From (a) we

find that the field-domain effect is negligible at

T 6 65 K due to very small injection and sequen-

tial-tunneling currents at these temperatures. The
bigger the field amplitude Em is, the larger E0ðtÞ
will be. A smaller Tp leads to a negative ENðtÞ on
the receiver barrier due to the strong non-steady

effect. This is completely different from the steady-

state results [8] in which ENðtÞ will always be

positive. Furthermore, we find from (b) that the
of sample 1 at the time t=Tp ¼ 0:25 s. Here, the comparison of

and the comparison of those with different values of N , n2D and

he other parameters used in calculations are the same as those in
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smaller the number of QW�s N is, the lower E0ðtÞ
is. The increase of n2D causes a larger sequential-

tunneling current, leading to a larger value of E0ðtÞ
due to an enhanced current imbalance between J 3D

inj

and J 2D
1 . Conversely, the increase of nc introduces

a bigger injection current, leading to a smaller

value of E0ðtÞ due to a suppressed current imbal-
ance between J 3D

inj and J 2D
1 .

Effects of classical charge fluctuations depend

on the geometric capacitance C0, as shown by Eq.
1
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Fig. 5. Calculated local fields EjðtÞ � EbðtÞ in different barrier layers

QWs at t=Tp ¼ 0:25 with different values of Em (squares and circles), T
are compared in (a) with (solid curves) and without (dashed curves) E

(b). The changed parameters are indicated in figures. The other param
(4). However, the quantum capacitance CQW starts

to play a role when the non-adiabatic effect is in-

cluded, as seen from Eq. (8). The striking thing is

that the effects of quantum charge fluctuations

become more and more important as T 6 65 K,

while the effects of classical charge fluctuations are
negligible at these temperatures. We compare in

Fig. 4 two calculated non-adiabatic fields Ena
j ðtÞ at

t=Tp ¼ 0:25 in sample 1 as a function of well index

j for T ¼ 40 and 77 K. From the figure we know

that Ena
j ðtÞ decreases with j due to field-domain

effects at T ¼ 77 K. However, Ena
j ðtÞ becomes in-

dependent of j at T ¼ 40 K. More importantly,

Ena
j ðtÞ increases with reducing T .
The effect of non-adiabatic field Ena

j ðtÞ can be

seen more clearly from the calculated local fields

EjðtÞ � EbðtÞ in different barrier layers of sample 1

in Fig. 5(a) and density fluctuations njðtÞ � n2D in

different QW�s in Fig. 5(b) at t=Tp ¼ 0:25 with

various values of Em, Tp and T . By comparing solid

and dashed curves in (a) we find that E0ðtÞ is re-

duced by a factor of 2 as Em ¼ 5 kV/cm, Tp ¼ 0:1 s
and T ¼ 77 K (squares). Moreover, E0ðtÞ decreases
even more due to Ena

j ðtÞ when Tp is reduced to 0.05

s (stars) due to stronger non-steady effects, but it

decreases much less when T is reduced to 40 K

(triangles) due to smaller injection and sequential-

tunneling currents. However, E0ðtÞ is enhanced

by non-adiabatic effects when Em is reduced to
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eters used in calculations are the same as those in Fig. 2.
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Fig. 6. Calculated non-adiabatic change in distribution func-

tions df ðE; tÞ at t=Tp ¼ 0:25 for electrons in sample 2 with

uniformly doped QWs. In this figure, we set Em ¼ 1 kV/cm with

T ¼ 40 K (solid curve) and T ¼ 20 K (dashed curve).
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1 kV/cm (circles). On the other hand, from (a) we

also find that EN ðtÞ becomes a much more negative

value for Em ¼ 5 kV/cm, Tp ¼ 0:1 s and T ¼ 77 K

when Ena
j ðtÞ is included in our calculations (solid

curve with squares) than when it is excluded (da-

shed curve with squares). The same situation oc-
curs when either Tp is reduced to 0.05 s (stars) or

Em is reduced to 1 kV/cm (circles) but with a

smaller overall magnitude compared to the curves

with the squares. The features observed for EN ðtÞ
in Fig. 5(a) will affect the conduction current de-

tected at the receiver layer. Effects of quantum

charge fluctuations are reflected in the calculated

njðtÞ � n2D in (b), where the reduction of charge in
the QWs is greatly increased except for the case

with small value of Em (circles). Although there is

a strong dependence of EjðtÞ on index j near the

emitter barrier, there is very little dependence of

njðtÞ on j there after Ena
j ðtÞ is included in the cal-

culations.

In order to gain further information about the

local change in the non-adiabatic electron distri-
bution function, we display df ðE; tÞ of sample 2 in

Fig. 6 at t=Tp ¼ 0:25 with uniform doping for

different values of T . From the figure it is clear that

df ðE; tÞ always shows a negative minimum at

l0ðn2D; T Þ since it is proportional to of l0
0 ðEÞ=oE.

Since the Fermi surface broadens with increasing

T , we find from the figure that the negative mini-

mum is partially suppressed and broadened (solid
curve) when T ¼ 40 K compared to that at
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Fig. 7. Calculated position z dependence of non-adiabatic (solid curve

(a) at T ¼ 40 K and Em ¼ 1 kV/cm with uniform doping inside the

t=Tp ¼ 0:25 (solid curve) and t=Tp ¼ 0:75 (dashed curve).
T ¼ 20 K. We also find that the negative minimum

is enhanced when Em is increased (not shown).

Fig. 7(a) and (b) present non-adiabatic charging

effects in the uniformly-doped QW on the Hartree

potentials for sample 2 at T ¼ 40 K and Em ¼ 1

kV/cm. From (a) we find that the positive peak in
the adiabatic Hartree potential V ð0Þ

H ðz; tÞ at the

center of the QW is greatly suppressed by the non-

adiabatic effect at t=Tp ¼ 0:25, leaving two positive

spikes at the edges of the QW. Fig. 7(b) shows the

comparison between non-adiabatic Hartree po-
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) and adiabatic (dashed curve) Hartree potentials of sample 2 in

QW and non-adiabatic Hartree potentials VHðz; tÞ in (b) for
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Fig. 8. Calculated non-adiabatic electron distribution functions f ðE; tÞ in (a) and logarithm of absolute value of total non-adiabatic

sequential-tunneling current InaðtÞ ¼ S½Jl0 ½Eb� þ DJnaðtÞ� of sample 2 as a function of applied ac electric field EbðtÞ in (b) for T ¼ 40 K

and Em ¼ 1 kV/cm. In (a), we plot f ðE; tÞ at t=Tp ¼ 0:25 (dotted curve) and t=Tp ¼ 0:75 (dashed curve). The time-independent adiabatic

electron distribution function f l0
0 ðEÞ (solid curve) is also shown for the comparison. In (b), the currents calculated from adiabatic

(lower curve) and non-adiabatic (upper curve) electron sequential tunneling are compared with each other.
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tentials when electrons in the QW are either re-

moved (t=Tp ¼ 0:25, solid curve) or added (t=Tp ¼
0:75, dashed curve). We find from (b) that the two

positive spikes at the edges of the QW are sup-

pressed but two negative spikes are enhanced when

electrons are added to the well.

Finally, we display in Fig. 8 f ðE; tÞ of sample 2

at t=Tp ¼ 0:25 (dotted curve) and 0.75 (dashed

curve), as well as in the adiabatic approximation,

(f l0
0 ðEÞ, solid curve) in (a) and the log10 jInaðtÞj as a

function of EbðtÞ in (b). From (a) we see f ðE; tÞ has
a fluctuation in time with respect to the adiabatic

f l0
0 ðEÞ around the Fermi energy. Compared with

the adiabatic electron sequential-tunneling current

(lower solid curve with DJnaðtÞ ¼ 0) in (b), the

symmetry of log10 jInaðtÞj with respect to the posi-

tive (electrons being removed) and negative (elec-

trons being added) peaks of EbðtÞ is broken in the
non-adiabatic case (upper solid curve). A small

offset [5] of the non-adiabatic log10 jInaðtÞj relative
to EbðtÞ ¼ 0 can be seen by comparing upper and

lower solid curves.
6. Conclusions

In conclusion, by including non-adiabatic

space-charge-field effects we have generalized the

previous theories for studying field-domain effects
in MQW photodetectors in the presence of an ac

voltage. We have found from our numerical cal-
culations that field-domain effects are only im-

portant at high temperatures or high voltages,

which implies the existence of significant injection

and sequential-tunneling currents in the system.

We have further found that non-adiabatic effects

become much more visible at low temperatures

and low voltages when the field-domain effects are

negligible. Furthermore, we have derived a dy-
namical differential equation for the non-adiabatic

electron distribution function for sequential-

tunneling current flowing through a MQW system.

Using this equation, we generalized the self-con-

sistent Hartree model for the calculation of non-

adiabatic electronic states in a quantum well.

Finally, we have connected the current quantum-

statistical theory to the previously-proposed
current-surge model with a leading-order approx-

imation.

In this paper, we have assumed the capture

probability is independent of electric field. This can

be justified by the fact that the capture probability

is nearly constant at low electric fields. In the

presence of incident photons, the conduction cur-

rent flowing through the MQW sample will be the
sum of sequential-tunneling and photoexcited

currents. From our studies in this paper, we predict

that the field-domain effects which are significant at
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high temperatures or high photon fluxes will

strongly affect both tunneling- and photocurrents.

On the other hand, non-adiabatic effects modify

these currents at low temperatures and low photon

fluxes when the current flowing through theMQWs

is small. These latter conditions are of utmost im-
portance in any space-based detector applications.

Furthermore, only the self-consistent Hartree

model is employed. The exchange interaction be-

tween electrons is expected to be very small [16] at

T ¼ 40 K and has been neglected.

The time scale for observing the non-adiabatic

space-charge effect requires

t < RtCQWS 	 st 	 2p=X;

where Rt ¼ ðLB=SÞ½oJl0 ½Eb�=oEb��1
is the differ-

ential tunneling resistance, depending on Eb and T .
Further, Xst 	 1 ensures the electrons see only an

instantaneous ac electric field during the sequen-
/NBþ1ðtÞ
/NB

ðtÞ

� �
¼ expðiNB

�kk0Þ
f1� i�kk0 � ð1=2EdÞ½E þ E1ðtÞ � UB

NBþ1 þ eEbðtÞNBD� V H
NBþ1ðtÞ�g/NBþ1ðtÞ

" #
; ðA:2Þ
tial-tunneling process. Finally, t < RtCQWA en-

sures the observation of a non-adiabatic space-

charge effect inside the QW. The tunneling time st
can be estimated from st � e=½Jl0 ½Eb�S�. For a

superlattice, we take Jl0 ½Eb�A ¼ 1 lA, leading to

st ¼ 0:1 ps and X 	 1013 Hz from Xst 	 1. For a

MQW system, we take Jl0 ½Eb�S ¼ 10 pA, leading

to st ¼ 10 ns and X 	 108 Hz. Difficulties in ob-
serving the non-adiabatic effect may come from

the small QW capacitance CQWS � 100 pF in the

requirement t < RtCQWS. For a superlattice, we

take Rt ¼ 104 X, and then t < 10�6 s is required

(very hard to observe). For a MQW system, on the

other hand, we take Rt ¼ 1011 X, which implies

t < 10 s (very easy to observe).
Acknowledgements

We would like to thank M. Ershov for stimu-

lating discussions on the field-domain distribution

in multiple quantum wells.
Appendix A

The quantum-mechanical transmission coeffi-

cient T½E þ E1;Eb;VH� used to evaluate the tun-

neling current in Eq. (27) can be found from the
following backward iteration [15] at each time t

/j�1ðtÞ ¼ 2

�
þ 1

Ed

UB
j

h
� eEbðtÞðj� 1ÞD

þ V H
j ðtÞ � E � E1ðtÞ

i�
/jðtÞ � /jþ1ðtÞ

ðA:1Þ

for 16 j6NB, where /jðtÞ ¼ /1ðzj; tÞ, V H
j ðtÞ ¼

VHðzj; tÞ, Ed ¼ �h2=2mBD
2, D ¼ LB=NB and NB is the

number of slabs (thickness D) within the barrier
layer. Here, UB

j ¼ 0 for j ¼ 0 and j ¼ NB þ 1.

Otherwise, UB
j ¼ V0. The ending boundary condi-

tion of Eq. (A.1) produces
where �kk0 ¼ ðD=�hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mBðE þ eEbðtÞLBÞ

p
. From the

solution of Eq. (A.1) we find the quantum-

mechanical transmission of electrons from

T½E þ E1;Eb;VH� ¼
1

jSj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E þ eEbðtÞLB

E

r
; ðA:3Þ

where jSj2 ¼ ½jaj2 þ jbj2 þ 2Reðab�Þ�=4. Here, the

two complex numbers, a and b, are defined by the

starting boundary condition of Eq. (A.1)

a
b

� �
¼ /1ðtÞ

�ði=2�kkÞð/2ðtÞ � /0ðtÞÞ

� �
ðA:4Þ

with �kk ¼ ðD=�hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2mBE

p
.
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